首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   144篇
  国内免费   179篇
测绘学   2篇
大气科学   8篇
地球物理   67篇
地质学   716篇
海洋学   17篇
综合类   37篇
自然地理   20篇
  2024年   3篇
  2023年   9篇
  2022年   13篇
  2021年   12篇
  2020年   20篇
  2019年   25篇
  2018年   24篇
  2017年   19篇
  2016年   31篇
  2015年   34篇
  2014年   38篇
  2013年   39篇
  2012年   42篇
  2011年   27篇
  2010年   30篇
  2009年   52篇
  2008年   38篇
  2007年   35篇
  2006年   39篇
  2005年   27篇
  2004年   25篇
  2003年   33篇
  2002年   26篇
  2001年   13篇
  2000年   36篇
  1999年   30篇
  1998年   18篇
  1997年   23篇
  1996年   18篇
  1995年   21篇
  1994年   15篇
  1993年   8篇
  1992年   13篇
  1991年   5篇
  1990年   9篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1979年   2篇
排序方式: 共有867条查询结果,搜索用时 15 毫秒
1.
张知春 《地质与勘探》2020,56(2):277-287
桂西北林旺金矿是近年来右江盆地新发现的卡林型金矿,位于乐业碳酸盐台地边缘乐业-浪全同生断裂带上。通过对矿区进行野外调查、岩矿鉴定并结合勘探成果进行综合研究,发现I号矿体群与断裂、褶皱的时空联系具有构造分带的特征,以F1断层为界,上盘褶皱鞍部发育石英杂砂岩夹粉砂质泥岩矿体,矿体近F1断层破碎带部位发育破碎的硅化构造岩带,F1下盘近破碎带部位发育强烈劈理化、炭化粉砂质泥岩带,指示矿区在印支期挤压过程中,石英杂砂岩顺着先存构造薄弱面以泥岩层为滑动系统,往上部逆冲并逐渐发生褶皱,产生许多张裂隙,成为成矿流体富集的场所。林旺金矿床是层滑-褶皱构造体系与成矿流体耦合作用的产物,分析了矿床构造成矿规律,提出了以层滑-褶皱运动机制为基础的成矿模式以及成矿远景。  相似文献   
2.
为揭示活动陆缘深水褶皱冲断带的特征及成因,本文利用地震和区域地质资料的综合分析,系统阐述了文莱—沙巴盆地深水褶皱冲断带的构造变形特征,并结合盆地演化动力学特点,探讨其构造变形机制及其对深水区油气成藏的影响.研究结果表明,文莱—沙巴盆地深水褶皱冲断带具有"垂向分期、平面分段"的特点,垂向上,以中中新统底界面为界可划分为下部(始新世-早中新世)和上部(中中新世-现今)两套逆冲褶皱冲断体系,其中下部逆冲褶皱冲断带的形成与古南海的俯冲作用密切相关,上部逆冲褶皱冲断带是中中新世以来三角洲前缘重力滑动与苏禄海扩张造成的区域挤压应力远程效应共同作用的结果,且苏禄海扩张造成的远程挤压效应主控平面上南北段褶皱冲断带变形的差异性,导致北段褶皱变形强度大于南段,具有背斜褶皱数量多、褶皱间距离短、逆冲断层倾角陡的特点,南段反之;且晚上新世以来北段深水区地层缩短量大于陆架区伸展量,两者之差为2~6 km,而南段两者相当,仅受三角洲前缘重力滑动影响.整个褶皱冲断带发育断弯、断展、断滑褶皱等3种断层相关褶皱以及叠瓦扇和冲起构造2种逆冲构造组合,是多期NW向挤压应力作用下形成的大型逆冲推覆构造,以前展式向盆地扩展.此外,由于中中新世以来逆冲断层的持续活动,研究区深水褶皱冲断带发育众多构造圈闭,油气成藏条件优越,且南段优于北段,靠近陆坡的近端优于远端,可作为勘探部署重点.  相似文献   
3.
李生栋 《地质与勘探》2020,56(4):675-687
寒山金矿床产于北祁连西段加里东褶皱带北缘,区内矿产资源丰富,加强其控矿构造及矿化富集规律研究,对矿区勘查意义重大。通过野外调查及室内研究,发现矿区内赋矿地层为奥陶系阴沟群火山碎屑岩。矿区内褶皱构造及韧-脆性剪切带发育,联合控制了矿体的分布。韧-脆性剪切带发育在褶皱两翼,受层滑剪切系统控制。矿体产在背斜转折端及两翼韧-脆性剪切带内,呈楔形产出,向下迅速尖灭。研究认为,矿体主要富集在韧-脆性剪切带发育部位,矿体的富集程度与蚀变带规模正相关,靠近背斜转折端的位置为矿体富集地段,多阶段成矿作用同部位叠加构成富矿体。  相似文献   
4.
巴布亚湾受澳大利亚板块与太平洋板块高速斜向汇聚的控制,经历了复杂的中、新生代构造演化.前人对巴布亚湾盆地结构构造特征的研究多是局部的、分散的,关于盆地的形成时间和动力学机制仍存在争议.利用覆盖全盆的钻井约束的高精度2D、3D地震资料,精细地刻画了盆地的结构和构造特征,揭示了巴布亚湾发育潘多拉和奥雷两期叠置的前陆盆地.潘多拉前陆盆地是形成于渐新世不整合面之上的晚渐新世-中中新世微型前陆盆地,走向为NNE.奥雷前陆盆地是发育在复杂的裂谷边缘之上的早中新世-现今的周缘前陆盆地,沿着弧形的巴布亚半岛延伸480 km;盆地走向在148°E发生转变,由西部的NW向转为东部的近EW向.潘多拉微前陆盆地被奥雷前陆盆地向南逐渐超覆的沉积地层覆盖,两个前陆盆地走向相互垂直,垂向上形成叠置结构.阐明了巴布亚湾新生代经历三期挤压事件及两期叠置的前陆盆地的形成演化,解决了盆地结构及区域构造演化认识的不足,理清了复杂陆缘环境从伸展到挤压多期构造事件的时序及动力学机制,为澳大利亚板块北缘的板块构造重建提供了盆内证据.   相似文献   
5.
珠江口盆地的成盆机制和构造演化过程探讨是该地区烃源岩研究中不可缺少的环节,也是大家广泛关注的焦点问题。本文以阳江东凹为例,通过整体与局部相结合的分析方法,从整体上确定了研究区走滑断裂的发育特征和展布框架,明确了区域构造运动与走滑断裂的成因联系;并将整体划分成局部,聚焦于阳江东凹古近纪盆地构造演化阶段逐步分解与精细检验,对珠江口盆地的成盆机制、发育过程和演化模式进行分阶段解剖和分析。结果表明,研究区的构造演化过程分为三个阶段:文三段沉积期NW-SE向伸展,文二段沉积期南北向区域拉张作用下NE走向断裂右行右阶走滑拉分和文一段-恩平组沉积期NWW向走滑断裂左行左阶拉分。由于三个阶段受到不同的区域构造运动影响,各阶段盆地的打开方式和断裂的分布特征具有一定差异。同时,不同时期的构造演化过程与同时期区域构造应力场的转变一一对应,控制了沉积-沉降中心的分布,据此本文提出珠江口盆地的裂解模式是多期走滑构造控制的"叠合型"拉分盆地的新认识,研究区整体表现为三期构造叠合型盆地,盆地的构造叠合机制与洼陷的生烃排烃具有一定的相关性。  相似文献   
6.
《China Geology》2021,4(2):245-255
The Central Africa Fold Belt (CAFB) is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years. However, favorable areas for gold exploration are poorly known. This paper presents (1) the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and (2) constraints gold mineralization events with respect to the collisional evolution of the CAFB. The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic (R) and the antithetic (R’) shears, which accompanied the dextral slip along the NE to ENE striking shear. The latter coincides with the last 570–552 Ma D3 dextral simple shear-dominated transpression, which is parallel to the Bétaré Oya shear zone hosting gold deposits. Gold mineralizations, which mainly occurred during the last dextral shearing, are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation. Gold mineralizations occurred mainly during the 570–552 Ma D3 event. The reactivation, which might be due to dextral simple shear during mylonitzation, plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration. Therefore, the Central Cameroon Shear Zone where Kékem is located, and which shows similar petrographical and structural features to those controling Batouri gold district, is a target area for gold exploration in Cameroon.  相似文献   
7.
Many concepts and interpretations on the formation of the Franciscan mélange have been proposed on the basis of exposures at San Simeon, California. In this paper, we show the distribution of chaotic rocks, their internal structures and textures, and the interrelationship between the chaotic rocks and the surrounding sandstones (turbidites). Mélange components, particularly blueschists, oceanic rocks, including greenstone, pillow lava, bedded chert, limestone, sandstone, and conglomerate, have all been brecciated by retrograde deformation. The Cambria Slab, long interpreted as a trench slope basin, is also strongly deformed by fluidization, brecciation, isoclinal folding, and thrusting, leading us to a new interpretation that turbiditic rocks (including the Cambria Slab) represent trench deposits rather than slope basin sediments. These rocks form an accretionary prism above mélanges that were diapirically emplaced into these rocks first along sinistral-thrust faults, and then along dextral-normal faults. Riedel shear systems are observed in several orders of scale in both stages. Although the exhumation of the blueschist blocks is still controversial, the common extensional fractures and brecciation in most of the blocks in the mélanges and further mixture of various lithologies into one block with mélange muddy matrix indicate that once deeply buried blocks were exhumed from considerable depths to the accretionary prism body, before being diapirically intruded with their host mélange along thrust and normal faults, during which retrograde deformation occurred together with retrograde metamorphism. Recent similar examples of high-pressure rock exhumation have been documented along the Sofugan Tectonic Line in the Izu forearc areas, in the Mineoka belt in the Boso Peninsula, and as part of accretionary prism development in the Nankai and Sagami troughs of Japan. These modern analogues provide actively forming examples of the lithological and deformational features that characterize the Franciscan mélange processes.  相似文献   
8.
The Mata Amarilla Formation dates from the early Upper Cretaceous and was deposited during a transition in tectonic regime from the extensional Rocas Verdes Basin to the Austral Foreland Basin. Detailed sedimentological logs and architectural parameters were used to define 13 facies associations. The distribution of facies associations and associated variations in fluvial architecture have enabled large‐scale changes in accommodation space/sediment supply ratios (A/S ratio) to be defined for the three component sections of the Mata Amarilla Formation. The lower and upper sections are characterized by a high A/S ratio, whereas the middle section corresponds to a low A/S ratio. In the western part of the study area, small‐scale variations in the A/S ratio were recognized in the middle section. The strong west to east trend in evolution of the fluvial systems coincides with the direction of propagation of the Patagonian fold and thrust belt, which is located to the west of the study area. Intervals of high A/S ratio (i.e. lower and upper sections) are interpreted to have developed during periods of increased loading by the fold and thrust belt caused by tectonic uplift. In contrast, intervals of low A/S ratio (i.e. middle section) were developed during periods of tectonic quiescence. This article suggests that the large‐scale variations in A/S ratios are related to different rates of migration and growth of the Patagonian fold and thrust belt, whereas the small‐scale variation occurred in response to specific periods of thrusting and folding in the Patagonian fold and thrust belt (i.e. local loads). This field example of the effects of different scales of variation in A/S ratios across the Austral Foreland Basin could be used to recognize similar tectonically forced variations in stratigraphic architecture in other foreland basins throughout the world, as well as to understand the response of fluvial systems to such changes.  相似文献   
9.
The leading edge of the ENE-trending Himalayan thrust front in Pakistan exhibits along-strike changes in deformational style, ranging from fault-bend to fault-propagation folds. Although the structural geometry is very gently deformed throughout the Salt Range, it becomes progressively more complex to the east as the leading edge of the emergent Salt Range Thrust becomes blind. Surface geology, seismic reflection, petroleum well, and chronostratigraphic data are synthesized to produce a 3-D kinematic model that reconciles the contrasting structural geometries along this part of the Himalayan thrust front. We propose a model whereby displacement was transferred, across a newly-identified lateral ramp, from a fault-bend fold in the west to fault-propagation folds in the east and comparable shortening was synchronously accommodated by two fundamentally different mechanisms: translation vs. telescoping. However, substantially different shortening distribution patterns within these structurally contrasting segments require a tear fault, which later is reactivated as a thrust fault. The present geometry of this S-shaped displacement transfer zone is a combined result of the NW–SE compression of the lateral culmination wall and associated tear fault, and their subsequent modification due to mobilization of underlying ductile salt.  相似文献   
10.
Seismic and drilling well data were used to examine the occurrence of multiple stratigraphic unconformities in the Tarim Basin, NW China. The Early Cambrian, the Late Ordovician and the late Middle Devonian unconformities constitute three important tectonic sequence boundaries within the Palaeozoic succession. In the Tazhong, Tabei, Tadong uplifts and the southwestern Tarim palaeo‐uplift, unconformities obviously belong to superimposed unconformities. A superimposed unconformity is formed by superimposition of unconformities of multiple periods. Areas where superimposed unconformities develop are shown as composite belts of multiple tectonic unconformities, and as higher uplift areas of palaeo‐uplifts in palaeogeomorphologic units. The contact relationship of unconformities in the lower uplift areas is indicative of truncation‐overlap. A slope belt is located below the uplift areas, and the main and secondary unconformities are characterized by local onlap reflection on seismic profiles. The regional dynamics controlled the palaeotectonic setting of the Palaeozoic rocks in the Tarim Basin and the origin and evolution of the basin constrained deposition. From the Sinian to the Cambrian, the Tarim landmass and its surrounding areas belonged to an extensional tectonic setting. Since the Late Ordovician, the neighbouring north Kunlun Ocean and Altyn Ocean was transformed from a spreading ocean basin to a closed compressional setting. The maximum compression was attained in the Late Ordovician. The formation of a tectonic palaeogeomorphologic evolution succession from a cratonic margin aulacogen depression to a peripheral foreland basin in the Early Caledonian cycle controlled the deposition of platform, platform margin, and deep‐water basin. Tectonic uplift during the Late Ordovician resulted in a shallower basin which was followed by substantial erosion. Subsequently, a cratonic depression and peripheral or back‐arc foreland basin began their development in the Silurian to Early–Middle Devonian interval. In this period, the Tabei Uplift, the Northern Depression and the southern Tarim palaeo‐uplift showed obvious control on depositional systems, including onshore slope, shelf and deep‐water basin. The southern Tarim Plate was in a continuous continental compressional setting after collision, whereas the southern Tianshan Ocean began to close in the Early Ordovician and was completely closed by the Middle Devonian. At the same time, further compression from peripheral tectonic units in the eastern and southern parts of the Tarim Basin led to the expansion of palaeo‐uplift in the Late Devonian–Early Carboniferous interval, and the connection of the Tabei Uplift and Tadong Uplift, thus controlling onshore, fluvial delta, clastic coast, lagoon‐bay and shallow marine deposition. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号